
Computational In-betweening for Line Drawings in Animation

Lillian Huang1, Soumik Mukhopadhyay1, Max Ehrlich1,2, Abhinav Shrivastava1

{lilhuang,soumik}@umd.edu, mehrlich@nvidia.com, abhinav@cs.umd.edu
1University of Maryland 2NVIDIA

Abstract

We present a framework for computer-aided in-
betweening that is specifically designed for line drawings
in animation. We separate training into two distinct parts.
The first consists of a two-stream motion refinement module,
which models intermediate animated movement with limited
context, using the input frames and forward and backward
reference flows as input. The second is the in-between gen-
erator, which takes the learned motion representations from
the first module and uses them to guide the synthesis of in-
between frames, modeled as foreground line segmentation.
This results in better generated image quality and state-of-
the-art performance when tested on real-world line-drawn
animated content. In particular our method outperforms
prior frame synthesis techniques which heavily depend on
color information for additional motion context.

1. Introduction
Hand-drawn animation is a timeless and beautiful

medium for storytelling. However, its production is ex-
tremely time- and labor-intensive. Animators must draw
each individual frame of their films, and even if they draw
at a framerate slower than the standard 24 frames per sec-
ond, they can produce hundreds of thousands of drawings.
Luckily, not every drawing is equally important in defining
motion: some are “key frames,” which depict a movement’s
overall rhythm, while others are “in-betweens,” which sim-
ply fill the gaps between key frames. In-betweening, there-
fore, is a task in which human animators take key frames
and draw the in-betweens. We note that traditional in-
betweening is a pre-production task—this process is applied
to line drawings only, before frames are colored and com-
posited with backgrounds.

Given that in-betweening is a relatively mundane task,
one way to reduce animators’ workload is to use a compu-
tational tool for assistance. Specifically, a computer can in-
between by performing key frame interpolation on animated
data. For this algorithm to be successful, we must balance
two competing goals. First, the algorithm must preserve

Figure 1. Computational in-betweens for line drawings. The
two input frames are depicted overlayed in top left (red: starting
frame, blue: ending frame). Results from video interpolation
methods AnimeInterp and RIFE, and results of our framework
are shown. Legend for each result image: black pixels: true
positives (correctly drawn in-between line); purple pixels: false
positives (drawn line not present in ground truth); green pixels:
false negatives (lines missed by the generator). Original images
Copyright ©James Baxter.

the artists’ creative control. In animation, timing and spac-
ing is imperative to get right in order to fully capture the
feeling of (often exaggerated) motion that an artist means
to evoke. Animators refine timing and spacing during pre-
production, working with only black and white line draw-
ings so that sequences can be easily changed. Only when
these line drawings are finalized can production commit to
compositing colors, backgrounds, light, and special effects
into the frames for the final render. Therefore, prioritiz-
ing artists’ creative control means that we must work with
black and white line drawings. Second, the algorithm must
produce accurate, crisp in-betweens which are, ideally, in-
distinguishable from what a human animator would have
produced.

While in-betweening appears at first to be an instance of
frame interpolation, a well-studied problem in deep learn-
ing [2, 3, 10, 11, 14, 15, 21, 22, 29], it has numerous unique
challenges which warrant the development of a novel algo-
rithm. Our algorithm is designed with these challenges in
mind and is motivated by the lack of satisfactory results us-

ing off-the-shelf frame interpolation solutions on this task.
The first major issue is with motion modeling. Traditional
frame interpolation tasks are designed for use on fully col-
ored and textured live action video. As such, these meth-
ods can leverage dense flow fields computed using com-
modity techniques (TV-L1 [24], RAFT [26], etc.). For in-
betweening, we have only 2D black-and-white line draw-
ings depicting the focus of a scene; dense flow methods
often outright fail on these data. Furthermore, animation
is a stylized medium where objects do not move and de-
form according to strict mathematical and physical laws as
they do in live-action video. While this in itself does not
necessarily preclude a traditional flow-based solution in the
presence of color data [25], these complex deformations
exacerbate the failure modes caused by our line data. Fi-
nally, we note that traditional solutions use l1 or l2 regres-
sion losses, something which is sensible when the goal is to
produce a full color scene. However, since our data consist
of sparse lines, this tends to regress to simple majority so-
lutions which are either entirely background (white pixels)
or gray smears where lines are averaged.

We address all of these issues in our method. Our algo-
rithm operates in two phases which are trained end-to-end:
motion refinement and in-between generation. The goal
of the motion refinement network is to learn accurate mo-
tion representations. We do this with a two-stream network.
Each network consumes one of the two input frames as well
as the ground-truth flow field that relates the two frames
(either a forward or backward flow). Since we cannot use
traditional dense flow-fields, we use sparse flows computed
with a point matching network. The two-stream network in
the motion refinement module predicts flow fields which re-
late the input frames to the in-between frame. Although the
motion refinement network predicts flow fields, its true goal
is to learn a rich and dense motion feature map that captures
the complex, stylistic, and sparse motions in the animated
frames. We use this feature map as input to the in-between
generator. The in-between generator consumes these mo-
tion features and predicts the in-between. Crucially, instead
of treating this as predicting the pixel values of the lines,
we instead supervise this network as “line-presence detec-
tion,” where each pixel is either 0 for background or 1 for
line. We use the binary cross-entropy loss function to train
this, making the prediction task more like segmentation or
classification.

In summary, our three major contributions are:

1. A method for producing in-between frames which
works on line drawings to preserve the artists’ creative
control over their animation.

2. A method for producing rich motion features which
helps deep networks leverage sparse motion informa-
tion.

3. A method for accurate line production that is based on
line-presence detection in the intermediate frames.

2. Related Works
Since in-betweening is a relatively tedious task, this pro-

cess has been a popular one for graphics researchers to fully
or semi-automate in the animation pipeline. Skeleton-based
pose interpolation has been widely implemented for 3D an-
imation, using algorithms such as splines and bezier curves
to follow an object or character’s motion in smooth arcs
from one pose to another [23]. For 2D animation, such al-
gorithms can be used to interpolate stroke-based drawings
as well, as they are vector representations of images and can
be mathematically manipulated. These vectors can depict a
variety of information regarding position, color, pen pres-
sure, time drawn, and more. However, 2D data does not
hold the inherent scene information of a 3D model. Thus,
to in-between 2D drawings, it is imperative that strokes
are properly matched from one frame to the next, so that
each frame’s generated strokes properly depict the under-
lying object’s form. Early iterations of this research re-
quired users to input the stroke correspondence manually
[5, 8, 13, 19], but eventually systems were able to match
strokes on their own, at least as an initial step before ad-
ditional artist guidance. These matching algorithms were
based on similarity metrics, calculated from stroke lengths
and enclosed areas [27] or strokes’ relationships to those
in neighborhoods around them [28]. Once strokes were
matched, in-betweens were generated by mathematically
interpolating the input strokes, fitting motion arcs to each
stroke and then deforming them along the arcs. There are
some drawbacks to using vector-based data, however. Many
animators learn their craft on paper, which does not trans-
late well to stroke-based programs. Strokes often simplify
or smooth out the characteristic irregularity of an artist’s
line, which can be difficult to work with in real-time—the
resulting image might not look how the artist intended, and
often is not as appealing. Thus, our method works with en-
tirely raster data.

In order to process and make sense of raster image data,
we turn to the field of live-action video interpolation. This
task has been well-studied with deep learning methods. Be-
ginning in 2016, [15] took a naive approach, simply feed-
ing two input frames to a convolutional neural network and
training it to match the RGB values of the in-between frame.
To improve on this, [14] introduced optical flow as a way to
guide interpolation. Liu et al. calculated both forwards and
backwards flow between the input frames, then synthesized
an in-between frame using bilinear interpolation between
corresponding pixel values from the input frames. Since op-
tical flow tracks the position of each input pixel, flow helps
find correspondences between the two input images, mir-
roring the stroke matching step present in graphics-based

in-betweening methods. Thus, most methods now use op-
tical flow to guide interpolation. One apparent problem to
this method was the presence of muddy flow fields at mo-
tion boundaries. When objects move, they often obscure
other objects in the scene, leading to problems with oc-
clusion reasoning. When this happens, pixels from one
frame cannot be mapped to any corresponding pixels in the
other, so simple bilinear interpolation leads to “smeared”
motion boundaries. Other researchers addressed this in var-
ious ways. [11] predicted visibility maps to try to rectify
this, [2] predicted depth maps to prioritize one frame’s pixel
values others, [21] used context to better synthesize inter-
mediate frames, [10] directly predicted intermediate flows,
and [22] also predicted depth, but with translational vari-
ance. However, unlike the arc motion that characterized
stroke-based in-betweening, all of these methods assumed
linear motion between input frames. This is due in part to
the smaller time steps between frames in live-action videos,
which allows arcs to be approximated by a many-piecewise
linear function. [29] puts arcs back into the model, assum-
ing nonlinear motion between frames and synthesizing in-
termediate frames as a quadratic function of the flow. All
of these methods mentioned are relatively high-performing,
but they are extensively trained on large, fully colored and
textured live-action datasets. They do not work when ap-
plied to line-drawn animation. Generated frames often look
blurry, smeared, or unchanged from the input frames. With-
out color or textures, as well as the relatively exaggerated
motions found in animated content, pinpointing proper cor-
respondence between frames is difficult.

Some deep learning methods have already been used
to try to improve video interpolation for animated data.
Notably, [6, 25] adapts flow-based deep learning methods
to better interpolate animated videos, addressing both the
texturally sparser data and the more exaggerated motions.
However, their methods depend on using colored data,
which does not work for line drawings. In contrast, [20]
designs their method for untextured, uncolored animation
data. Their method applies a distance transform to the in-
put line drawings, which simulates texture in each image.
This improves the conditions to find pixel-level correspon-
dence, leading to more robust flow fields. Our method, in
contrast, does not warp input images at all, instead using
flow to simply learn a deep representation of line motion
between frames, and using that to guide in-between synthe-
sis.

3. Method
Our framework is illustrated in Figure 2. Given input

frames I0 and I2, our goal is to output a synthesized in-
between Î1. First, we calculate the forward flow f0→2 and
backward flow f2→0 between I0 and I2 using the method
detailed in Section 3.1. We then feed our input frames

and flows into our two-stream motion refinement module.
Each stream is a network which takes one frame and its
corresponding flow field as input and outputs the interme-
diate flow. Specifically, the first stream takes I0 and f0→2

as input and outputs an estimated f̂0→1, while the second
stream takes I2 and f2→0 as input and outputs an estimated
f̂2→1. We supervise the training of this module with ground
truth intermediate flows f0→1 and f2→1 using l2 loss. The
features from these two streams, denoted F0→1 and F2→1,
are then fed as inputs to the in-between generator network,
which returns an estimated in-between Ît, modeled as a
foreground segmentation mask. Our framework is trained
end-to-end.

3.1. Optical Flow Generation

For real-world animated line drawing sequences, true
optical flows are not readily available, therefore, we must
generate the optical flows. Because our data consist of
only black-and-white line drawings, the optical flow field
are also difficult to compute. Traditional methods Lucas-
Kanade [18] or TV-L1 [24] and even newer deep-learning-
based methods like RAFT [26] fail on these data. These
methods heavily leverage color and texture data for match-
ing pixels across frames, two features which are missing
from our data.

Instead, we found that the Persistent Independent Parti-
cles (PIPs) approach [9] works well when tracking points
in our data over time, even though the frames are visually
sparse. PIPs independently focuses on each particle be-
ing tracked and iteratively updates the position and features
across all timestamps using occlusion aware local deep fea-
ture correlation at multiple scales. Empirically, it has pro-
duced the best pixel-to-pixel correspondence between con-
secutive frames of all the methods we explored.

We use PIPs to generate sparse flows for our data. These
flows track the movement of only the lines in our data since
the white background is static. Note that PIPs does not pro-
vide flows in the standard format, only a list of points and
their positions tracked over time. Thus, we calculate the
sparse forward (f0→2 and f0→1) and backward flows (f2→0

and f2→1) by storing the difference between the position of
the tracked points over subsequent frames.

3.2. Framework details

Our framework to generate high fidelity in-between line
drawings has two core components: (a) a two-stream mo-
tion refinement module, and (b) an in-between generator
network. Each module has its own distinct loss term, and
both loss terms are used to train our framework in an end-
to-end fashion. We discuss these modules and losses below.

(features)

(features)

Motion Refine
Network 0

Motion Refine
Network 2

In-Between
Generator

Figure 2. Network Architecture (refer to Section 3 for more details).

3.2.1 Motion Refinement Module

The purpose of the motion refinement module is to better
understand the motion between the two key frames, and to
be able to extrapolate what the intermediate motion might
be. Given the appearance of a key frame, as well as a flow
field that shows how lines move over a large time step, we
want to learn how individual parts or pixels of the frame
move at smaller time steps, i.e. the granularity at which
we aim to generate in-betweens. We note that the motion
between animated key frames is often nonlinear, especially
because animations tend to exaggerate movement. In ad-
dition, animated key frames are often further apart in time
than their live-action counterparts, since they are drawn at a
lower frame rate than a traditional camera records. Thus,
instead of approximating the intermediate flows by cal-
culating a simple linear combination of the overall flows,
we train the module to predict the intermediate flow in-
stead, supervised by either ground truth intermediate flow
for our Blender data, or intermediate flow generated with
the method described in Section 3.1 for the pencil test. Our
loss function for intermediate flow supervision is l2 loss. In
addition, animation interpolation is subject to artistic styl-
ization and line imperfections, so it is important that we
calculate intermediate flows in both directions in order to
capture such effects and define the overall motion accord-
ingly. Hence, we adopt the two-stream architecture of this
module, one for each direction of movement.

As we teach this module how to calculate intermediate
motion, the network learns a representation that captures
all the difficult aspects of line-drawn animated motion. We
note that this representation holds more complex informa-
tion than if it was learning motion representation from live-
action frames—while live-action videos have physical con-
straints, animated content must also work with motion that
is at least partly spurred by artistic decisions. Because of
this, we train a separate module where its sole task is to

understand motion, instead of training a single network to
perform both motion refinement and in-between generation.
This gives us a more explicit, targeted representation of the
motion in animated data, and therefore can better predict
where lines should be drawn for the in-between frame.

3.2.2 In-between Generator

The in-between generator takes the intermediate motion
representations from both streams of the motion refinement
module and uses it as input to generate an in-between frame.
We represent generated in-betweens as a foreground seg-
mentation mask instead of RGB pixel values, and denote
black lines as the “foreground” of an image. This turns our
task into one of classification, or “line detection,” as we are
only asking if a given pixel is part of a drawn line or not.
This is both a more efficient representation of our black-
and-white data than RGB pixel values, as well as a better
model our in-betweening task, since the generator is essen-
tially being asked to “draw” where the foreground is in a
frame.

This representation of our frames as foreground segmen-
tation masks means that we use binary cross-entropy as our
reconstruction loss. Previous methods use l1 or l2 loss, but
these lead to various artifacts (see Section 5) when render-
ing an in-between in our domain. Specifically, l1 loss fa-
vors majority values and therefore overwhelmingly returns
white background pixels with our data, while l2 loss leads to
line blurring. Our segmentation-style loss helps synthesize
crisper lines and mitigates the smearing or blurriness that
usually occurs at motion boundaries in video interpolation.

4. Experiments

4.1. Data and preprocessing

There are few publicly available animation datasets, and
none for our domain of black-and-white line drawings.

Therefore, we generated data using Blender [7], rendering
only object edges to mimic our intended domain. We gener-
ated 120 videos in Blender, each with 242 frames and ren-
dered at 24 frames per second for a total of 58,080 frames.
These videos depict a Blender primitive of a monkey’s head,
called Suzanne, moving in space, spinning, and scaling up
and down. In addition to only rendering the form’s edges to
resemble line drawings, we also ran the difference of Gaus-
sians (DoG) algorithm [17] on each image to binarize our
data into foreground segmentation masks. From each video,
we took successive triplets of frames as our training data.
We did this at two granularities: 1 intermediate frame (e.g.
network inputs are frames 000 and 002 of a video, and the
network output tries to match frame 001) and 3 intermedi-
ate frames (e.g. network inputs are frames 000 and 004 of a
video, and the network output tries to match frame 002). Fi-
nally, we cropped our training images to 512×512 squares,
both to augment our data and to make training more effi-
cient. We also generated ground truth flow between frames
for network input and supervision.

To test our framework on our goal domain of real anima-
tion sequences of line drawings, we test on such sequences,
called a “pencil test,” by animator James Baxter from his
YouTube channel [4]. We broke this video into 24 indi-
vidual frames per second, and once again ran the DoG al-
gorithm on the frames to obtain foreground segmentation
masks. We also divided these frames into triplets at the
aforementioned granularities (1 and 3 intermediate frames).
Although we did not have ground truth flow for this data,
we used [9] to generate both intermediate flows (key frame
to an in-between), for supervision for the motion refinement
networks, and reference flows (key frame to key frame).

4.2. Training details

Our framework was trained end-to-end. Our two-stream
motion refinement module consisted of two UNets, each
with a ResNet34 as its underlying architecture [30]. Our
in-between generator is also a UNet, with a modified and
deepened ResNet34 as its underlying architecture. All three
UNets were initialized with random weights and trained on
our data. We used the Adam optimizer to train all of our net-
works [12]. Both UNets in our motion refinement module
started training with a learning rate of 10−4, which changed
for subsequent epochs with cosine annealing [16]. The in-
between generator network was trained starting with learn-
ing rate 10−3. This learning rate was held constant for 200
epochs, and then began decreasing with cosine annealing.
For all network optimizers, we set β1 = 0.5, β2 = 0.999.
Our final loss L was calculated from the sum of the losses
from each stream of the motion refinement module and the
loss from the in-between generator, resulting in the follow-
ing loss:

L = Lstreams + Lrecon

5. Results

We present the results of our framework in this section.
We show both qualitative and quantitative results on both
the Blender-generated dataset and James Baxter’s pencil
test in comparison to two other video interpolation frame-
works. We compare against RIFE [10], which currently
gives state-of-the-art performance in live-action video in-
terpolation, and AnimeInterp [25], which uses methods tai-
lored for fully rendered and colored animated content.

Our quantitative results are shown in Tables 1 and 2. We
evaluate on four standard perception metrics: Peak signal-
to-noise ratio (PSNR), structural similarity (SSIM), cham-
fer distance, and learned perceptual image patch similarity
(LPIPS). We show that we beat AnimeInterp for all met-
rics we evaluate and on both datasets, which is meaning-
ful because AnimeInterp was also designed specifically for
animated data. We also show that we achieve better met-
rics on RIFE for PSNR, SSIM, and chamfer distance when
evaluating on the pencil test. RIFE still gives better quan-
titative results for our Blender-generated dataset. How-
ever, the Blender-generated dataset does not show complex
motion—the movement of the Blender primitive is slow,
there are no deformations or occlusions, and there is only
one object in the frame. Thus, this dataset achieves rela-
tively high-performing results for all methods we use for
evaluation, and does not give an accurate sense of the true
performance of each method for our domain. In fact, if we
look at our qualitative results, shown in Figure 4, we see
that although our quantitative metrics do not measure up to
RIFE, our image quality is just as clean as their output for
the same dataset.

On the other hand, we achieve state-of-the-art results on
all but one of the metrics we calculated when we evaluate
on a real-world pencil test. This data is a better representa-
tion of our target domain than Blender-generated data, given
that there is more complex motion shown in the sequence,
and more distinctly shows the benefits of using our system
on line drawings. We can see that although our metrics in
Table 2 show slight improvements over RIFE, our qualita-
tive results in Figure 4 are vastly cleaner than those gener-
ated from either of the baselines. In particular, we point to
the characteristic blurring around motion boundaries with
RIFE. We can also see evidence of “ghosting” with other
methods, or synthesizing an in-between by simply stacking
the two input frames—observe the third example from the
top in Figure 4. In contrast, our lines are much more crisp,
and lines are properly deformed to show an intermediate
pose that is consistent with underlying 3D geometry. For
example, the left-hand character’s leg can actually be found
in a position that is “in between” those of the input frames.

Figure 3. Qualitative results. The following columns are referred to left-to-right, while rows are referred to top-down. The inputs to our
framework are depicted in the leftmost column; the starting frame is shown in red, while the ending frame is overlaid in blue. The second
column shows the ground truth frame. The last column shows our framework’s results. The first three rows show results from James
Baxter’s pencil test, while the last two show results on our Blender-generated dataset. Original images ©James Baxter.

Method PSNR↑ SSIM↑ Ch. dist↓ LPIPS↓
AnimeInterp 24.1862 0.9362 9.7225 0.2837

RIFE 32.4101 0.9936 3.7378 0.0079
Ours 28.1267 0.9898 7.7505 0.0064

Table 1. Metrics with Blender dataset. State of the art results are
bold, second-best are underlined.

Method PSNR↑ SSIM↑ Ch. dist↓ LPIPS↓
AnimeInterp 20.2265 0.9459 28.0739 0.1121

RIFE 21.1639 0.9583 28.3712 0.0482
Ours 21.4970 0.9632 25.1816 0.0806

Table 2. Metrics with pencil test. State of the art results are bold,
second-best are underlined.

5.1. Additional Qualitative Results

We present qualitative results in Figure 5 from additional
pencil tests, taken from animator James Baxter’s YouTube

Figure 4. Qualitative comparison with baselines. The following columns are referred to left-to-right, while rows are referred to top-
down. The results to our network are shown in the leftmost column. The second and third columns show results on AnimeInterp and RIFE
respectively. The first three rows show results from James Baxter’s pencil test, while the last two show results on our Blender-generated
dataset. We see that there are significantly more visual artifacts when generating in-betweens than with our method. Original images
©James Baxter.

channel [4] and from a YouTube channel called Time and
Spacing, which shows animator Milt Kahl’s work [1]. All
pencil tests were preprocessed in the same way as described
in Section 4.1.

5.2. Ablation

We present ablation studies to show the necessity of our
design choices.

5.2.1 Reconstruction loss function

We ran experiments with our Blender-generated data,
trained on first l1 and then l2 loss instead of binary cross-
entropy with logits loss. We show a number of compar-
isons of in-between quality in Figure 6. We see that in col-
umn 1, where we used l1 loss, the generated intermediate
frames look “wiped,” as if the lines have been almost en-
tirely erased. This is because l1 loss favors the majority, and
since white pixels overwhelmingly outnumber black pixels
in each frame, the generated outputs tend to have this effect.
With l2 loss, seen in the middle column, we see that there is

Figure 5. Additional results from pencil tests found on YouTube.

Figure 6. Ablation on various reconstruction losses with our Blender-generated dataset. We see that with l1 loss (shown in the leftmost
column), many lines are omitted from the frame, to the point of looking almost completely blank. With l2 loss (shown in the middle
column), the frames look extremely blurry. In comparison, our method of using BCE loss produces much cleaner and more accurate
frames than both “traditional” reconstruction loss functions.

a smudging or smoothing effect that happens around some
of the lines. This is a well-documented problem, as op-
timization using l2 loss is equivalent to fitting a Gaussian
distribution, which is unimodal, to data that is often multi-
modal.

5.2.2 No motion refinement

We also ran an experiment without using the motion refine-
ment module, training an in-between generator alone. We
used both the input frames and the overall flows as input
to this in-between generator, and asked it to output a fore-
ground segmentation mask of the estimated in-between. In
this experimental setup, we have ostensibly given the net-
work enough information to find correspondences between
the images and to deform lines accordingly to generate an
in-between. However, in using only one network, this setup
combines motion understanding and line generation into
one task for the system to solve.

We ran this experiment on the pencil test data, as the
Blender-generated data depicts only very simple motion and
does not deform any objects. We can see the results of
this experiment in Figure 7. With only a single network,
our results look extremely smudged—almost unrecogniz-
able from the ground truth in-between, or either of the input
frames. We therefore see that in-between generation is too
complex a task for a single network. It is necessary to break
down the task into two smaller, easier parts, and to train a
network specifically to perform each part. Furthermore, it is
important for the system to have explicitly learned the mo-
tion of the lines between the frames, as this helps place lines
correctly and clearly in an intermediate frame.

5.3. Refinement Flow Results

We present image results from the sparse intermediate
flow reconstruction efforts of the two-stream motion refine-
ment network. Although we do not use the output inter-
mediate flows themselves for subsequent in-between gen-
eration, their accuracy ensures the saliency of the motion
representations we do use. We compare the output flows to
the ground truth output flows in Figure 8. The color and
shape of the recovered flows indicates that the motion re-
finement module correctly learned accurate magnitude and
direction of motion. Moreover, the position and sparsity of
these flows shows that the network is able to accurately dis-
tinguish background and foreground shapes.

6. Conclusion

Our in-between generation framework achieves state-
of-the-art qualitative and quantitative results on real-world
line-drawn animated content. Our two-stream motion re-
finement module first finds a deep representation for inter-
mediate line motion, both in the forwards and backwards
directions. This embedding space aids the in-between gen-
erator in detecting where a line may fall in the in-between
frame.

Unfortunately, there are no standard metrics to evaluate
generated in-between frames depicted only with lines on a
white background. Although we report findings on vari-
ous perception metrics from past literature, they still do not
fully encapsulate the performance of our in-between gener-
ator. One future work of our research is to explore metrics
suitable for line drawings. In addition, we will explore user
studies with traditional animators, who work with raster line

Figure 7. Examples of generated in-betweens with no motion refinement. We see that without the motion refinement module, the network
does not understand how to properly deform lines, and the results look “smudged.”

drawings. Finally, we want to build a more robust line draw-
ing dataset which captures more complex animated motion.
We note that the work presented in this paper is essentially
a proof of concept. We show results on rudimentary data
only, with no plans to capitalize on the models we have cur-
rently trained. If we were to proceed with this work, we
would build a custom dataset from scratch for our task, and
would make sure to properly inform and compensate any
artists involved for their contributions.

References
[1] Time and spacing youtube channel, 2019. 7
[2] Wenbo Bao, Wei-Sheng Lai, Chao Ma, Xiaoyun Zhang,

Zhiyong Gao, and Ming-Hsuan Yang. Depth-aware video
frame interpolation. In CVPR, 2019. 1, 3

[3] Wenbo Bao, Wei-Sheng Lai, Xiaoyun Zhang, Zhiyong Gao,
and Ming-Hsuan Yang. Memc-net: Motion estimation and
motion compensation driven neural network for video inter-
polation and enhancement. PAMI, 2018. 1

[4] James Baxter. James baxter’s youtube channel, 2016. 5, 7
[5] N. Burtnyk and M. Wein. Computer-generated key-frame

animation. SMPTE, 1971. 2
[6] Shuhong Chen and Matthias Zwicker. Improving the percep-

tual quality of 2d animation interpolation. In Proceedings of
the European Conference on Computer Vision, 2022. 3

[7] Blender Online Community. Blender - a 3D modelling and
rendering package. Blender Foundation, Stichting Blender
Foundation, Amsterdam, 2018. 5

[8] Charles X. Durand. The “toon” project: Requirements for a
computerized 2d animation system. Computers & Graphics,
1991. 2

[9] Adam W Harley, Zhaoyuan Fang, and Katerina Fragkiadaki.
Particle video revisited: Tracking through occlusions using
point trajectories. In ECCV, 2022. 3, 5

[10] Zhewei Huang, Tianyuan Zhang, Wen Heng, Boxin Shi, and
Shuchang Zhou. Real-time intermediate flow estimation for
video frame interpolation. In ECCV, 2022. 1, 3, 5

[11] Huaizu Jiang, Deqing Sun, Varun Jampani, Ming-Hsuan
Yang, Erik Learned-Miller, and Jan Kautz. Super slomo:

High quality estimation of multiple intermediate frames for
video interpolation. In CVPR, 2018. 1, 3

[12] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In Yoshua Bengio and Yann LeCun,
editors, 3rd International Conference on Learning Represen-
tations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings, 2015. 5

[13] Marc Levoy. A color animation system: Based on the mul-
tiplane technique. In 4th Annual Conference on Computer
Graphics and Interactive Techniques, SIGGRAPH. ACM,
1977. 2

[14] Ziwei Liu, Raymond Yeh, Xiaoou Tang, Yiming Liu, and
Aseem Agarwala. Video frame synthesis using deep voxel
flow. In ICCV, October 2017. 1, 2

[15] Gucan Long, Laurent Kneip, Jose M. Alvarez, and Hong-
dong Li. Learning image matching by simply watching
video, 2016. 1, 2

[16] Ilya Loshchilov and Frank Hutter. SGDR: Stochastic gradi-
ent descent with warm restarts. In International Conference
on Learning Representations, 2017. 5

[17] David G Lowe. Object recognition from local scale-invariant
features. In Proceedings of the seventh IEEE international
conference on computer vision, volume 2, pages 1150–1157.
Ieee, 1999. 5

[18] Bruce D Lucas, Takeo Kanade, et al. An iterative image
registration technique with an application to stereo vision,
volume 81. Vancouver, 1981. 3

[19] Takeo Miura, Junzo Iwata, and Junji Tsuda. An application
of hybrid curve generation: Cartoon animation by electronic
computers. In AFIPS’67. ACM, 1967. 2

[20] Rei Narita, Keigo Hirakawa, and Kiyoharu Aizawa. Optical
flow based line drawing frame interpolation using distance
transform to support inbetweenings. In IEEE, 2019. 3

[21] Simon Niklaus and Feng Liu. Context-aware synthesis for
video frame interpolation. CoRR, abs/1803.10967, 2018. 1,
3

[22] Simon Niklaus and Feng Liu. Softmax splatting for video
frame interpolation. In CVPR, 2020. 1, 3

[23] Rick Parent. Computer animation: algorithms and tech-
niques. Newnes, 2012. 2

Figure 8. Comparison of ground truth intermediate flows with the motion refinement module’s output flows.

[24] Javier Sánchez Pérez, Enric Meinhardt-Llopis, and Gabriele Facciolo. TV-L1 Optical Flow Estimation. Image Processing

On Line, 2013. 2, 3
[25] Li Siyao, Shiyu Zhao, Weijiang Yu, Wenxiu Sun, Dimitris

Metaxas, Chen Change Loy, and Ziwei Liu. Deep animation
video interpolation in the wild. In CVPR, 2021. 2, 3, 5

[26] Zachary Teed and Jia Deng. RAFT: recurrent all-pairs field
transforms for optical flow. CoRR, abs/2003.12039, 2020. 2,
3

[27] Brian Whited, Gioacchino Noris, Maryann Simmons,
Robert W. Sumner, Markus Gross, and Jarek Rossignac. Be-
tweenit: An interactive tool for tight inbetweening. In Euro-
graphics, 2010. 2

[28] Jun Xing, Li-Yi Wei, Takaaki Shiratori, and Koji Yatani. Au-
tocomplete hand-drawn animations. In SIGGRAPH Asia,
2015. 2

[29] Xiangyu Xu, Li Siyao, Wenxiu Sun, Qian Yin, and Ming-
Hsuan Yang. Quadratic video interpolation. In NeurIPS,
2019. 1, 3

[30] Pavel Yakubovskiy. Segmentation models pytorch. https:
//tinyurl.com/4stf98fb, 2020. 5

https://tinyurl.com/4stf98fb
https://tinyurl.com/4stf98fb

	. Introduction
	. Related Works
	. Method
	. Optical Flow Generation
	. Framework details
	Motion Refinement Module
	In-between Generator

	. Experiments
	. Data and preprocessing
	. Training details

	. Results
	. Additional Qualitative Results
	. Ablation
	Reconstruction loss function
	No motion refinement

	. Refinement Flow Results

	. Conclusion

