
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Computational In-betweening for Line Drawings in Animation

Anonymous Author(s)

1 INTRODUCTION
Hand-drawn animation is a timeless and beautiful medium for
storytelling. However, its production is extremely time- and labor-
intensive. Animators must draw each individual frame of their films,
and even if they draw at a framerate lower than the standard 24
frames per second, they can produce up to hundreds of thousands
of drawings. Luckily, not every drawing is equally important in
defining motion: some are “key frames,” which depict a movement’s
overall rhythm, while others are “in-betweens,” which simply fill
the gaps between key frames. In-betweening, therefore, is a pre-
production task in which human animators take uncolored key
frames and draw the in-betweens. One way to reduce animators’
workload is to use a computational tool for in-betweening instead.
Specifically, a computer can in-between by performing key frame
interpolation with line drawings. Computer-assisted in-betweening
is difficult, since images only give 2D information about objects that
move and transform in 3D space, and systems must accommodate
animation styles where objects’ underlying 3D forms are inconsis-
tent. Historically, this task has been done with stroke-based data,
where line drawings are stored as a collection of vectors that depict
information regarding position, color, etc. Corresponding strokes
from successive key frames were matched either manually [Burt-
nyk and Wein 1971; Durand 1991] or based on similarity metrics,
including those calculated from stroke lengths and enclosed areas
[Whited et al. 2010] or strokes’ relationships to those in neighbor-
hoods around them [Xing et al. 2015]. Once strokes are matched,
in-betweens are generated by mathematically interpolating the in-
put strokes, fitting motion arcs to each stroke and deforming them
along the arcs. However, many animators learn their craft on paper,
which does not translate well to stroke-based programs.

Another way to represent drawings is to use raster data, where
we can leverage the developing field for video interpolation. This
currently finds state-of-the-art results with deep learning methods
[Bao et al. 2019; Huang et al. 2022; Jiang et al. 2018; Niklaus and
Liu 2020; Siyao et al. 2021], trained with large, fully colored and
textured video datasets, which are able to produce high-quality
interpolated frames. However, they do not work with the sparse
visual content of black-and-white line drawings. The generated
frames often look blurry, smeared, or unchanged from the input
key frames themselves. The reason for this is that, without col-
ors and textures, finding proper correspondence between frames
becomes much more difficult in our domain.

We present a computational framework to do in-betweening for line
drawings intently trained with three loss functions to help deal with
these issues. In particular, we propose to use (a) a segmentation-
style binary cross-entropy loss with logits as the reconstruction
loss for the in-between, which is better suited for line drawings;
(b) an adversarial loss to encourage the generated in-between to
resemble line drawings; and (c) a consistency loss, inspired by
cycle-consistency [Zhu et al. 2017], which further constrains the

Input DAIN

RIFE Ours

Figure 1. Computational in-betweens for line drawings. The two input
frames are depicted overlayed in top left (red: starting frame, blue: ending
frame). Results from video interpolation methods DAIN and RIFE, and
preliminary results of our framework are shown. Legend for each result im-
age: black pixels: true positives (correctly drawn in-between line); purple
pixels: false positives (drawn line not present in ground truth); green pixels:
false negatives (lines missed by the generator). Zoomed-in results for two
best-performing methods are also shown, which highlights our strengths.
Best viewed digitally and zoomed in. Original images ©James Baxter.

in-between to be consistent with the input frames, using backwards
warping with interpolated flow. Preliminary results demonstrate
that our framework achieves qualitatively superior in-between line
drawings than current state-of-the-art video interpolation methods.

2 METHOD
Overview. Our framework is illustrated in Figure 2. Given input
frames 𝐼0 and 𝐼1, our goal is to output a synthesized in-between 𝐼𝑡 ,
0 < 𝑡 < 1. First, we calculate the forward flow 𝑓0→1 and backward
flow 𝑓1→0 between 𝐼0 and 𝐼1 using the TVL1 algorithm [Pérez et al.
2013]. We choose this algorithm for optical flow over deep learning
methods because it is edge-preserving and independent of available
training data. We then feed the input frames and calculated flows
into our in-between generator neural network, which returns an
in-between 𝐼𝑡 , modeled as a foreground segmentation mask. This
generated in-between is then fed to a discriminator neural network,
and is also warped using the forward and backwards flows.Warping
𝐼𝑡 gives estimated input frames 𝐼0 and 𝐼1, which are compared to
the real input frames 𝐼0 and 𝐼1.

Data and pre-processing. There are few publicly available ani-
mation datasets, and none for our domain of black-and-white line
drawings. Therefore, we generated data using Blender [Community
2018], rendering only object edges to mimic our intended domain
(more details in the supplementary). To test our framework on our
goal domain of real animation sequences of line drawings, we test

1



117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Computational In-betweening for Line Drawings in Animation

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Inputs GT

In-between

Generator

Backwards
Warp

Figure 2. Illustration of our computational framework for in-betweening.

on such a sequence, called a “pencil test,” by animator James Baxter
from his YouTube channel [Baxter 2016].

2.1 Framework details
Our framework to generate high fidelity in-between line drawings
has three core components: (a) an in-between generator network,
(b) a discriminator network, and (c) a warping module that con-
strains our task, inspired cycle consistency. These modules result
in three loss terms used to train our framework in an end-to-end
fashion. We discuss these modules and losses below; training im-
plementation details can be found in the supplementary document.

The main module in our framework is the in-between generation
network. We propose to represent the generated in-between as a
foreground segmentation mask instead of raw pixel data, which
has two benefits. First, we can use binary cross-entropy loss with
logits as the reconstruction loss (Lrecon in Figure 2), which clas-
sifies each pixel in an image as either foreground (black line) or
background (white background). Previous methods either use L1
loss, which favors majority values and therefore overwhelmingly
returns white background pixels with our data, or L2 loss, which
leads to line blurring. Second, the proposed representation better
models our frames as “drawings” on “paper;” since the masks bina-
rize the in-between, it helps synthesize crisper lines and mitigate
the smearing or blurriness that usually occurs at motion boundaries
in video interpolation. Our network uses a UNet with a ResNet34
underlying architecture, and was pre-trained on ImageNet segmen-
tation [Yakubovskiy 2020].

The second module is a discriminator network trained using an
adversarial loss [Goodfellow et al. 2014] (LGAN in Figure 2). This
classifies whether the in-between is “real” (i.e., from the original
video data) or “fake” (i.e., generated by our generator). This encour-
ages crisper line quality in our generated in-between, making it
better resemble line drawings in our domain. Our network uses a
DCGAN-based [Radford et al. 2016] discriminator.

Finally, our third module warps the generated in-between using
estimated optical flow to reconstruct the two input frames. This en-
forces cycle consistency between inputs and their reconstructions.
Since we do not have ground truth 𝑓𝑡→1 or 𝑓𝑡→0, we estimate these
values by linearly interpolating 𝑓0→1 and 𝑓1→0, which is reasonable
given small motion between inputs. We backwards warp to avoid
holes, as is standard practice, and warp 𝐼𝑡 using 𝑓0→𝑡 to synthesize
𝐼0, and use 𝑓1→𝑡 to synthesize 𝐼1. We then use a cycle-consistency
reconstruction loss (Lcycle in Figure 2) between these synthesized
and ground truth input images, which constrains our generated
in-betweens to look “in between” the start and end frames. This
added constraint introduces better structure to our task and reduces

the space of plausible in-betweens, thus improving their quality.
Following the first module, we again use binary cross-entropy loss
with logits as our reconstruction loss.

3 PRELIMINARY RESULTS
We present qualitative results on a real line drawing animation
sequence in Figure 1. More results, including those with Blender
data and quantitative evaluation, are in the supplementary docu-
ment. Our preliminary results are visually superior to two state-
of-the-art video interpolation methods, DAIN [Bao et al. 2019] and
RIFE [Huang et al. 2022]. DAIN struggles to generate “true” in-
betweens in our domain. It produces numerous visual artifacts and
does not deform shapes as required in an in-between. For example,
notice the left character’s leg where DAIN simply copies an input
frame. Although RIFE produces fewer artifacts, it is still unable to
deform the leg for the in-between when there are large movements
(e.g., note the zoomed-in region), again copying the placement of
the leg from an input frame. Furthermore, the clusters of purple
pixels near character movement (on the hand and the back foot) in
the RIFE result shows where the in-between is blurred. In contrast,
our method has deformed the leg the most accurately to the ground
truth, and shows much crisper line quality than the other two meth-
ods. Although our method was not able to render the whole foot,
and the line quality around motion boundaries starts to be grainy,
the position of the leg is truly “in between” the start and end frames,
showing significant improvements over other video interpolation
methods. There is more work to be done to continue to improve
our framework so that deformed shapes are fully rendered, and so
that line quality can improve further.

REFERENCES

W. Bao, W.-S. Lai, C. Ma, X. Zhang, Z. Gao, and M.-H. Yang. 2019. Depth-Aware Video
Frame Interpolation. In CVPR.

J. Baxter. 2016. James Baxter’s YouTube Channel. https://tinyurl.com/fdjwj5mj
N. Burtnyk and M. Wein. 1971. Computer-Generated Key-Frame Animation. SMPTE

(1971).
B. O. Community. 2018. Blender - a 3D modelling and rendering package. Blender

Foundation, Stichting Blender Foundation, Amsterdam.
C. X. Durand. 1991. The “TOON” project: Requirements for a computerized 2D anima-

tion system. Computers & Graphics (1991).
I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A.

Courville, and Y. Bengio. 2014. Generative Adversarial Nets. In NeurIPS.
Z. Huang, T. Zhang, W. Heng, B. Shi, and S. Zhou. 2022. Real-Time Intermediate Flow

Estimation for Video Frame Interpolation. In ECCV.
H. Jiang, D. Sun, V. Jampani, M.-H. Yang, E. Learned-Miller, and J. Kautz. 2018. Su-

per SloMo: High Quality Estimation of Multiple Intermediate Frames for Video
Interpolation. In CVPR.

S. Niklaus and F. Liu. 2020. Softmax Splatting for Video Frame Interpolation. In CVPR.
J. S. Pérez, E. Meinhardt-Llopis, and G. Facciolo. 2013. TV-L1 Optical Flow Estimation.

Image Processing On Line (2013).
A. Radford, L. Metz, and S. Chintala. 2016. Unsupervised Representation Learning

with Deep Convolutional Generative Adversarial Networks. In ICLR.
L. Siyao, S. Zhao, W. Yu, W. Sun, D. Metaxas, C. C. Loy, and Z. Liu. 2021. Deep

Animation Video Interpolation in the Wild. In CVPR.
B. Whited, G. Noris, M. Simmons, R. W. Sumner, M. Gross, and J. Rossignac. 2010.

BetweenIT: An Interactive Tool for Tight Inbetweening. In Eurographics.
J. Xing, L.-Y. Wei, T. Shiratori, and K. Yatani. 2015. Autocomplete Hand-drawn Anima-

tions. In SIGGRAPH Asia.
P. Yakubovskiy. 2020. Segmentation Models Pytorch. https://tinyurl.com/4stf98fb.
J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros. 2017. Unpaired Image-to-Image Translation

using Cycle-Consistent Adversarial Networks. In ICCV.

2

https://tinyurl.com/fdjwj5mj
https://tinyurl.com/4stf98fb

	1 Introduction
	2 Method
	2.1 Framework details

	3 Preliminary Results
	References

