
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Computational In-betweening for Line Drawings in Animation
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1 DATA AND PRE-PROCESSING
We generated 240 videos in Blender [Community 2018], each with
242 frames and rendered at 24 frames per second for a total of 58,080
frames. These videos depict an object moving in space, spinning,
and scaling up and down. Half of these videos contain a cube,
which is a simpler 3D form, while the other half shows the Blender
primitive of a monkey’s head (called Suzanne), a more complex
form.We only rendered the forms’ edges to best match our intended
domain, and also ran the difference of Gaussians (DoG) algorithm
on each image to binarize our data into foreground segmentation
masks. From each video, we took successive triplets of frames as
our training data. We did this at two granularities: 1 intermediate
frame (e.g., network inputs are frames 000 and 002 of a video, and
the network output tries to match frame 001) and 3 intermediate
frames (e.g., network inputs are frames 000 and 004 of a video, and
the network output tries to match frame 002). Finally, we cropped
our training images to 512 × 512 squares, both to augment our data
and to make training more efficient.

As for the James Baxter’s animation sequence of line drawings,
called a “pencil test” by traditional animators, we took the video
from his YouTube channel [Baxter 2016] and broke the video down
into 24 individual frames per second. We once again ran the DoG
algorithm on the frames, divided them into triplets at the aforemen-
tioned granularities, and cropped the training images into 512×512
squares to prepare these images as data.

2 TRAINING DETAILS
Our network was trained end-to-end. Our in-between generator
was a UNet, with an underlying architecture of a ResNet34 [Yakubovskiy
2020]. It was pre-trained on ImageNet segmentation, and was then
fine-tuned on our data. We used the Adam optimizer to train both
our generator and our discriminator [Kingma and Ba 2015]. For the
generator, we used an initial learning rate of 10−4, which changed
for subsequent epochs with cosine annealing [Loshchilov and Hut-
ter 2017]. We used learning rate 10−5 to train the discriminator.
For both network optimizers, we set 𝛽1 = 0.5, 𝛽2 = 0.999. We also
weighted our cycle-consistency-inspired loss term [Zhu et al. 2017],
since its magnitude was overwhelming that of our other loss terms.
Therefore, we multiplied the raw cycle-consistency loss by 0.1. This
resulted in the following loss:

L = Lrecons + LGAN + 0.1Lcycle

3 ADDITIONAL RESULTS
There are no good standard metrics to evaluate the generated in-
between frames. Standard metrics used in the generative modeling
literature are not well suited for line drawing domain, as they en-
courage generating blurry “smudges” to cover more area as opposed
to crisp lines. One future work of our research is to explore metrics

Table 1. Preliminary results on
cubes (Blender).

Method PSNR ↑ SSIM ↑

DAIN 26.89 0.98
RIFE 39.02 0.99

Ours 28.93 0.99

Table 2. Preliminary results on
Suzanne (Blender).

Method PSNR ↑ SSIM ↑

DAIN 22.88 0.96
RIFE 34.22 0.99

Ours 25.23 0.98

Table 3. Preliminary results on pencil test.

Method PSNR ↑ SSIM ↑

DAIN 18.68 0.89
RIFE 20.69 0.96

Ours 17.29 0.93

suitable for line drawings. In addition, we will explore user studies
with traditional animators, who work with raster line drawings.

Even with these drawbacks, we report the standard generative mod-
eling metrics here in Tables 1, 2, and 3 for completeness. For each
dataset, we show comparisons to two state-of-the-art video interpo-
lation methods in peak signal-to-noise ratio (PSNR) and structural
similarity (SSIM), both metrics that evaluate the quality of gener-
ated images (though again, not necessarily good metrics for line
drawings). The best-performing method for each dataset is bolded
and the second-best method is shown in blue. Note that although
our metrics are usually an improvement on DAIN [Bao et al. 2019],
we are usually outperformed by RIFE [Huang et al. 2022]. However,
our qualitative results often show a different picture.

For the Blender-generated datasets, our results look just as clean as
those generated by RIFE, though our PSNR and SSIM scores are usu-
ally lower. Furthermore, we see Figure 1 that for the pencil test, RIFE
often returns blurry images, especially at motion boundaries. Note
in particular the clusters of purple and green pixels near the left
character’s legs and hands in the fifth and seventh rows of Figure
1, where there is the most motion. In contrast, our framework gen-
erates crisper lines in our in-betweens, though they are sometimes
grainy. This shows that the metrics alone do not reflect all aspects
of the qualitative results, as they are well-performing for images
with smudges, but not those that are grainy. This disparity between
our metrics and the qualitative results is especially apparent when
considering that DAIN outperforms our framework on the pencil
test dataset in PSNR, but all DAIN in-betweens have many visual
artifacts and are generally noisy, as well as not properly deforming
shapes to actually depict characters moving “in between” the start
and end frames.
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Figure 1. Additional preliminary results. The inputs to our framework are depicted in the leftmost column; the starting frame is shown in
red, while the ending frame is overlaid in blue. The second column shows results on DAIN, the third shows results on RIFE, and the last
shows our framework’s results. Each row shows a different example from our various datasets: Blender-generated cubes, Blender-generated
monkey heads (Suzanne), and James Baxter’s pencil test. For each image in the three rightmost columns, black pixels depict true positives
(correctly drawn in-between line), purple pixels are false positives (drawn line not present in ground truth), and green pixels are false
negatives (lines missed by the generator). Original images ©James Baxter.
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